3.11.52 \(\int \frac {1}{(b d+2 c d x)^3 \sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=95 \[ \frac {\sqrt {a+b x+c x^2}}{d^3 \left (b^2-4 a c\right ) (b+2 c x)^2}+\frac {\tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{2 \sqrt {c} d^3 \left (b^2-4 a c\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {693, 688, 205} \begin {gather*} \frac {\sqrt {a+b x+c x^2}}{d^3 \left (b^2-4 a c\right ) (b+2 c x)^2}+\frac {\tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{2 \sqrt {c} d^3 \left (b^2-4 a c\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((b*d + 2*c*d*x)^3*Sqrt[a + b*x + c*x^2]),x]

[Out]

Sqrt[a + b*x + c*x^2]/((b^2 - 4*a*c)*d^3*(b + 2*c*x)^2) + ArcTan[(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 -
4*a*c]]/(2*Sqrt[c]*(b^2 - 4*a*c)^(3/2)*d^3)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 688

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[4*c, Subst[Int[1/(b^2*e
 - 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[2*c*d - b*e, 0]

Rule 693

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-2*b*d*(d + e*x)^(m
 + 1)*(a + b*x + c*x^2)^(p + 1))/(d^2*(m + 1)*(b^2 - 4*a*c)), x] + Dist[(b^2*(m + 2*p + 3))/(d^2*(m + 1)*(b^2
- 4*a*c)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*
c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && Rationa
lQ[p]) || IntegerQ[(m + 2*p + 3)/2])

Rubi steps

\begin {align*} \int \frac {1}{(b d+2 c d x)^3 \sqrt {a+b x+c x^2}} \, dx &=\frac {\sqrt {a+b x+c x^2}}{\left (b^2-4 a c\right ) d^3 (b+2 c x)^2}+\frac {\int \frac {1}{(b d+2 c d x) \sqrt {a+b x+c x^2}} \, dx}{2 \left (b^2-4 a c\right ) d^2}\\ &=\frac {\sqrt {a+b x+c x^2}}{\left (b^2-4 a c\right ) d^3 (b+2 c x)^2}+\frac {(2 c) \operatorname {Subst}\left (\int \frac {1}{2 b^2 c d-8 a c^2 d+8 c^2 d x^2} \, dx,x,\sqrt {a+b x+c x^2}\right )}{\left (b^2-4 a c\right ) d^2}\\ &=\frac {\sqrt {a+b x+c x^2}}{\left (b^2-4 a c\right ) d^3 (b+2 c x)^2}+\frac {\tan ^{-1}\left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{2 \sqrt {c} \left (b^2-4 a c\right )^{3/2} d^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 107, normalized size = 1.13 \begin {gather*} \frac {\sqrt {a+x (b+c x)} \left (\frac {2 \left (b^2-4 a c\right )}{(b+2 c x)^2}+\frac {\tanh ^{-1}\left (2 \sqrt {\frac {c (a+x (b+c x))}{4 a c-b^2}}\right )}{\sqrt {\frac {c (a+x (b+c x))}{4 a c-b^2}}}\right )}{2 d^3 \left (b^2-4 a c\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((b*d + 2*c*d*x)^3*Sqrt[a + b*x + c*x^2]),x]

[Out]

(Sqrt[a + x*(b + c*x)]*((2*(b^2 - 4*a*c))/(b + 2*c*x)^2 + ArcTanh[2*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]
]/Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]))/(2*(b^2 - 4*a*c)^2*d^3)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.96, size = 124, normalized size = 1.31 \begin {gather*} \frac {\sqrt {a+b x+c x^2}}{d^3 \left (b^2-4 a c\right ) (b+2 c x)^2}-\frac {\tan ^{-1}\left (-\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+\frac {2 c x}{\sqrt {b^2-4 a c}}+\frac {b}{\sqrt {b^2-4 a c}}\right )}{\sqrt {c} d^3 \left (b^2-4 a c\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((b*d + 2*c*d*x)^3*Sqrt[a + b*x + c*x^2]),x]

[Out]

Sqrt[a + b*x + c*x^2]/((b^2 - 4*a*c)*d^3*(b + 2*c*x)^2) - ArcTan[b/Sqrt[b^2 - 4*a*c] + (2*c*x)/Sqrt[b^2 - 4*a*
c] - (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c]]/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*d^3)

________________________________________________________________________________________

fricas [B]  time = 0.55, size = 440, normalized size = 4.63 \begin {gather*} \left [\frac {{\left (4 \, c^{2} x^{2} + 4 \, b c x + b^{2}\right )} \sqrt {-b^{2} c + 4 \, a c^{2}} \log \left (-\frac {4 \, c^{2} x^{2} + 4 \, b c x - b^{2} + 8 \, a c + 4 \, \sqrt {-b^{2} c + 4 \, a c^{2}} \sqrt {c x^{2} + b x + a}}{4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}\right ) + 4 \, {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {c x^{2} + b x + a}}{4 \, {\left (4 \, {\left (b^{4} c^{3} - 8 \, a b^{2} c^{4} + 16 \, a^{2} c^{5}\right )} d^{3} x^{2} + 4 \, {\left (b^{5} c^{2} - 8 \, a b^{3} c^{3} + 16 \, a^{2} b c^{4}\right )} d^{3} x + {\left (b^{6} c - 8 \, a b^{4} c^{2} + 16 \, a^{2} b^{2} c^{3}\right )} d^{3}\right )}}, -\frac {{\left (4 \, c^{2} x^{2} + 4 \, b c x + b^{2}\right )} \sqrt {b^{2} c - 4 \, a c^{2}} \arctan \left (\frac {\sqrt {b^{2} c - 4 \, a c^{2}} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - 2 \, {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (4 \, {\left (b^{4} c^{3} - 8 \, a b^{2} c^{4} + 16 \, a^{2} c^{5}\right )} d^{3} x^{2} + 4 \, {\left (b^{5} c^{2} - 8 \, a b^{3} c^{3} + 16 \, a^{2} b c^{4}\right )} d^{3} x + {\left (b^{6} c - 8 \, a b^{4} c^{2} + 16 \, a^{2} b^{2} c^{3}\right )} d^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^3/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((4*c^2*x^2 + 4*b*c*x + b^2)*sqrt(-b^2*c + 4*a*c^2)*log(-(4*c^2*x^2 + 4*b*c*x - b^2 + 8*a*c + 4*sqrt(-b^2
*c + 4*a*c^2)*sqrt(c*x^2 + b*x + a))/(4*c^2*x^2 + 4*b*c*x + b^2)) + 4*(b^2*c - 4*a*c^2)*sqrt(c*x^2 + b*x + a))
/(4*(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*d^3*x^2 + 4*(b^5*c^2 - 8*a*b^3*c^3 + 16*a^2*b*c^4)*d^3*x + (b^6*c - 8
*a*b^4*c^2 + 16*a^2*b^2*c^3)*d^3), -1/2*((4*c^2*x^2 + 4*b*c*x + b^2)*sqrt(b^2*c - 4*a*c^2)*arctan(1/2*sqrt(b^2
*c - 4*a*c^2)*sqrt(c*x^2 + b*x + a)/(c^2*x^2 + b*c*x + a*c)) - 2*(b^2*c - 4*a*c^2)*sqrt(c*x^2 + b*x + a))/(4*(
b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*d^3*x^2 + 4*(b^5*c^2 - 8*a*b^3*c^3 + 16*a^2*b*c^4)*d^3*x + (b^6*c - 8*a*b^
4*c^2 + 16*a^2*b^2*c^3)*d^3)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^3/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to divide, perhaps due to rounding error%%%{%%%{8,[3]%%%},[6,3,0,0]%%%}+%%%{%%{[%%%{-24,[2]%%%},0]:[1,0,%%%
{-1,[1]%%%}]%%},[5,3,1,0]%%%}+%%%{%%%{36,[2]%%%},[4,3,2,0]%%%}+%%%{%%%{-24,[3]%%%},[4,3,0,1]%%%}+%%%{%%{[%%%{-
32,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,3,3,0]%%%}+%%%{%%{[%%%{48,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,3,1,1
]%%%}+%%%{%%%{18,[1]%%%},[2,3,4,0]%%%}+%%%{%%%{-48,[2]%%%},[2,3,2,1]%%%}+%%%{%%%{24,[3]%%%},[2,3,0,2]%%%}+%%%{
%%{[-6,0]:[1,0,%%%{-1,[1]%%%}]%%},[1,3,5,0]%%%}+%%%{%%{[%%%{24,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,3,3,1]%%%
}+%%%{%%{[%%%{-24,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,3,1,2]%%%}+%%%{1,[0,3,6,0]%%%}+%%%{%%%{-6,[1]%%%},[0,3
,4,1]%%%}+%%%{%%%{12,[2]%%%},[0,3,2,2]%%%}+%%%{%%%{-8,[3]%%%},[0,3,0,3]%%%} / %%%{%%{poly1[%%%{-8,[4]%%%},0]:[
1,0,%%%{-1,[1]%%%}]%%},[6,0,0,0]%%%}+%%%{%%%{24,[4]%%%},[5,0,1,0]%%%}+%%%{%%{poly1[%%%{-36,[3]%%%},0]:[1,0,%%%
{-1,[1]%%%}]%%},[4,0,2,0]%%%}+%%%{%%{[%%%{24,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,0,0,1]%%%}+%%%{%%%{32,[3]%%
%},[3,0,3,0]%%%}+%%%{%%%{-48,[4]%%%},[3,0,1,1]%%%}+%%%{%%{poly1[%%%{-18,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,
0,4,0]%%%}+%%%{%%{[%%%{48,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,0,2,1]%%%}+%%%{%%{[%%%{-24,[4]%%%},0]:[1,0,%%%
{-1,[1]%%%}]%%},[2,0,0,2]%%%}+%%%{%%%{6,[2]%%%},[1,0,5,0]%%%}+%%%{%%%{-24,[3]%%%},[1,0,3,1]%%%}+%%%{%%%{24,[4]
%%%},[1,0,1,2]%%%}+%%%{%%{poly1[%%%{-1,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,0,6,0]%%%}+%%%{%%{[%%%{6,[2]%%%},
0]:[1,0,%%%{-1,[1]%%%}]%%},[0,0,4,1]%%%}+%%%{%%{[%%%{-12,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,0,2,2]%%%}+%%%{
%%{[%%%{8,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,0,0,3]%%%} Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.06, size = 174, normalized size = 1.83 \begin {gather*} \frac {\ln \left (\frac {\frac {4 a c -b^{2}}{2 c}+\frac {\sqrt {\frac {4 a c -b^{2}}{c}}\, \sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}}{x +\frac {b}{2 c}}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {4 a c -b^{2}}{c}}\, c \,d^{3}}-\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}}{4 \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{2} c^{2} d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^3/(c*x^2+b*x+a)^(1/2),x)

[Out]

-1/4/d^3/c^2/(4*a*c-b^2)/(x+1/2*b/c)^2*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)+1/2/d^3/c/(4*a*c-b^2)/((4*a*c
-b^2)/c)^(1/2)*ln((1/2*(4*a*c-b^2)/c+1/2*((4*a*c-b^2)/c)^(1/2)*(4*(x+1/2*b/c)^2*c+(4*a*c-b^2)/c)^(1/2))/(x+1/2
*b/c))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^3/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (b\,d+2\,c\,d\,x\right )}^3\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*d + 2*c*d*x)^3*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((b*d + 2*c*d*x)^3*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{b^{3} \sqrt {a + b x + c x^{2}} + 6 b^{2} c x \sqrt {a + b x + c x^{2}} + 12 b c^{2} x^{2} \sqrt {a + b x + c x^{2}} + 8 c^{3} x^{3} \sqrt {a + b x + c x^{2}}}\, dx}{d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**3/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(b**3*sqrt(a + b*x + c*x**2) + 6*b**2*c*x*sqrt(a + b*x + c*x**2) + 12*b*c**2*x**2*sqrt(a + b*x + c*
x**2) + 8*c**3*x**3*sqrt(a + b*x + c*x**2)), x)/d**3

________________________________________________________________________________________